4(x-6)=16x+4(x^2-4)

Simple and best practice solution for 4(x-6)=16x+4(x^2-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x-6)=16x+4(x^2-4) equation:



4(x-6)=16x+4(x^2-4)
We move all terms to the left:
4(x-6)-(16x+4(x^2-4))=0
We multiply parentheses
4x-(16x+4(x^2-4))-24=0
We calculate terms in parentheses: -(16x+4(x^2-4)), so:
16x+4(x^2-4)
We multiply parentheses
4x^2+16x-16
Back to the equation:
-(4x^2+16x-16)
We get rid of parentheses
-4x^2+4x-16x+16-24=0
We add all the numbers together, and all the variables
-4x^2-12x-8=0
a = -4; b = -12; c = -8;
Δ = b2-4ac
Δ = -122-4·(-4)·(-8)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4}{2*-4}=\frac{8}{-8} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4}{2*-4}=\frac{16}{-8} =-2 $

See similar equations:

| 3(n+1)=2(n+10) | | -4y=-5(16)-18 | | 11(n+1)=2(n+10) | | 3x^-4=56 | | -4y=-5(-14)-18 | | 3t+12=-60 | | 20(n+1)=2(n+10) | | 2x+2=3x+ | | 10x+15=14x-13 | | 6.5x+1600=42.25+40x | | -4y=-5(-12)-18 | | 34-h=10 | | -4y=-5(-11)-18 | | -4y=-5(-3)-18 | | 5.3g+5=2.3+11 | | -6(8m+8)=-6m+36 | | -4y=-5(5)-18 | | 2x+3/3-3x-2/4=1 | | -4y=-5(3)-18 | | G(x)=x2^+x | | 2n+1=118 | | 60+10x=5+15x | | -4y=-5(2)-18 | | -40=-2(3n-40 | | -4y=-5(10)-18 | | 4n+3=15+n | | -4y=-5(-10)-18 | | -4y=-5(-5)-18 | | -4y=-5(1)-18 | | -9-11=4x | | x/(-17.2x)=25 | | 7(18)-23=11y-1 |

Equations solver categories